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Abstract

This paper contains an overviaw of a thaoratice-
al framework for the dasign of rsliable multivariable
control systams, with special emphasis on actuator
failures and necessary actuator reduadancy levels.
Using a linear model of the system, with Markovian
failure probabilities and quadratic performanca in-
dax, an optimal stochastic control problem is posed
and solved. The solution requires the itaratiocn of
a set of highly coupled Piccati-like matxix diffex~
ence equations; if thesa convergs one hag a reli-
able design; if they diverge, the design is unre-
liable, and the system desiqn camnnot be stabilized.

In addition, it is shown that the existance of
a stabilizing constant feedback gain and tha reli-
ability of its implementation is equivalent to the
convergence properties of a set of coupled Riccati-
like matrix difference equations,

In suzamary, these results can ba used for off~
line stndies relating the open loop dynamics, re~
quired pexrformance, actuator mean time to failura,
and functicnal or identical actuator redundancy,
with and without feedback gain reconfiguration
strategies.

1. Introduction

This paper is an overview of a research effort
which addresses scme of the current problems in inter-
facing systems theory and reliability, and puts this
rasearch in perspective with the opea questiocns in
this field. Reliability is a relative concept; it
is, roughly, the probability that a system will per-
form according to specifications Zor a given amount
of tima., The motivating question behind this report
is: What constitutes a reliable system?

If a theory were available which allowed a com=
parison between alternates designs, based cn both the
expectad system reliability and ths expected system
performance, it would greatly simplify the current
design methodology. It is unfortunats that at pre-
sent thers is no accepted methodology for a determine~
ation of expectad system performanca which accounts
for changes in the performance characteristics due
to failure, repair or reconfiguration of system func-
ticns. This repeort presents such a methcdolegy for
a specific class of linear systems with guadratic
cost criteria.

*This research was supported by the Fannie and John
Hertz Foundaticn, NASA Amas grant NGL-22-009-]24,
and AFOSR grant 77-328l. The work was pexrformed
while J. D. Birdwell was a graduate student at
M.I.T. .
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Basically, the zreliability of a system is the
probability that the system will perform according
to specifications for a given amount of time. In
a system-theoretic context, tha specification which
a system wust meet is stability; also, sinca, at

- least for most mathematical models of systems, sta-

bility is a. long-termattribute of the systen, the
anount of tize for which the system must remain
stabla is taken to be infinits. Therefore, the
following édefinitions of system reliability are
used in this papex: .

A system (implying the hardware con-
figuration, or mathematical model of that configu-~
ration, and its associated contxol and estimation

structure) has reliability r whera r is the proba-
bility that the system will be stable for all time.

Definition 2: A system is said to be reliable if
r=1.

Definirion 3: A system design, or configuration,
ig resliable if it is stabilizable with probability
one.-

These definiticns of reliability depend on the da-
#inition of starility, and for systems which can

have more than one mode of operatiocn, stability is
not that easy to determine. In this paper, stabi-
lity will zean either mean-square stahility (ovexr

ity
scme random space which will ba lofe ————

Cadoh ol '\h"xayc\.ifi&d
for the moment), or cost-stability (again, an ex-
pactation ovar a cerxtain random spacs), which is
basically the property that tha accurmulated cost
of system operaticn is bounded with probability
cne. (The definition of cost is also deferred.)

The reliahility of a system will depend on
thae reliahilities of its various components ard on
their interconrections. Thus, the systems engineer
zust have an understanding of the probabilistic me-
chanisms of ccrmonent failure, repair, and systen
reconfiiguration.

Component failures, repairs, and reconfigqura-
ticns are modeled in this paper by a Markow chain.
Only catastrophic changes in the system structure
ara considered; degradations are not modeled. The
hazaxd rate is assumed to be constant, resulting in
an expenential failuxe distribution. Ia the dis-
creta-tima case, to which this paper is confinsd
exclusively, the hazard rate becomes the probabili-~
ty of failure (or repair or reconfiguration) be-
tween time £ and tima t+l.

It is now necessary to define precisely the
modes of operaticn and their dynamic tsansitions.
The terms system conficuratica and svstem structure
will be used.
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Pefinjtion 4: System Structure: A possible mode
of operation for a given system; the ccmponents,
their intercomnecticns, and the infoxmation flow
in the system at a given time.

Dafinition 5: System Confiquration: The original
design of the system, accounting for all modeled
modes of operaticn, and the Maxkov chain governing
the copficuration, or structural, dynamics (transi-
tions amcng the variocus structures). In this pa-
per, structures are referenced by convention by
the set of non-negative integers

e {0,1,2,3,...,L} (1.1

An important question in reliability is the
effact of redundancy on system performance. In
othar words, how should tha allocation of control
rescuzces be allocated to the redundant ccmponents,
and how should the component reliabilities affect
the choice of an optimal contzrol law? The control
methodologies presented in this paper answer the
question for a specific class system configurations.
They yield a quantitative analysis of the affec-
tiveness of a given.system design, where effective-
ness is a quantity relating both the performance
and tha reliability of a configuration design.

Previously, several authors have studied the
cptimal control of systems with randoemly varying
structure. Most notable among these is Wonham ([1],
where the solution to the continuous time linear
regulator problem with randoaly jumping parametars
is developed. This soluticn is similar to the dis-
creta time switching gain solution presented in
Section 3. UVonham also proves an existance result
for the steady-state optimal solution to the con-
trol of systems with randomly varxying stxuactura;
howaever, the conclusion is only sufficiant; it is
not necessary. Similar results ware obtained in
Beard {[2] for the existence of a stahilizing gain,
where the structures wers of a highly specific form;
these results wers necessary and sufficient alge-
braic conditions, but cannot be readily generalized
to less specific classes of systems. Additional
work on the contzol problem for this class of sys-

berger [4], Bar-Whalom & Sivan (5], Willnexr (6]
and Pierce & Sworder (7]. The dual problem of
state estimation with a system with randem parame-
ter variations over a finite set was studied in
Chang & Athans [8].

Recently, the robusiness of the linear qua-
dratic requlator has been studied by Wong, et. al.
{9] and Safonov & Athans [10]. Section 6 of this
paper gives necessary and sufficient conditions
for the existance of a robust linear constant gain
control law for a specific class of systems.

Scme of the preliminary rasults on which this
research was based wers prasented in unpublished
form at the 1977 Joint Automatic Control Confex-
ence in San Francisco by Bixdwell, and published
for the 1977 IEEE Conference on Dacision and Con-
trol Theory in New Orleans by Birdwell & Athans
[11). This paper is based on the results in
Birdwell [12]. .

Thexe are two major contributions of this re-~
search. First, the classification of a system de~
sign as reliable or unreliable has been equated
with the existence of a steady-state switching
gain and cost for that design. If this gain does

not exist, then the system Zesign cannot ba stabil-
ized; hence, it is unreliable. The only recourse

in such a case is to use wore reliable components
and/or more redundancy. Reliability of a system
design can therefore ke determined by a test for ¢
convergenca of the set of coupled Riccati-like
equation as the Zinal time goes to infinity.

The seccnd major contribution lies in the ro-
bustness implications. Precisely, a constant gain
for a linear feedback control law for a set of li-
pear systems is said to be robust if that gain
stabilizes each linear system individually, i.e.,
without regard to the configquration dynamics. The
problem of determining when such a gain exists,
and of finding a robust gain, can be formulatad in
the contaxt of this research. As a result, this
nathodalogy gives an algoritim for detarmining a
robust gain for a set of linear systems which is
optimal with respect to a quadratic c¢ost criterion.
If the algorithm does not converge, then no robust
gain exists.

Por the purpose of brevity, most result will
be stated without proof. The reader may find these
proofs in reference [12], and in the papers
curzently in preparation.

2. Problem Statement

Consider the system

Een T RXe ¥ 2y Be 2.1
where

n
X, €R : : . (2.2)
g, &R : (2.3)
aer™MR T (2.4)
and, for each k, an elemant of an indexing set I
kez1={0,1,2, ... ,L} (2.5)

nxm

3, ¢ R (2.6)
where

{ 1 T,
_B_ks ‘-E-i‘ier (2.7)

Tha index k(t} is a random variable taking values in
I which is governed by a Markov chain and

Teyp = 2N, 2.8)

T e & (2.9)

where T e is the probability of k(t) = i, given no
L[4

on-line information about k(t), and T, is the init-
ial distribution over I.

It is assumed that tha following sequenca of
events occurs at sach time t:
1} x . is cobsarved exactly

2) then 3 switches to 3

=k(t-1l) =k(t)
3) then a, is applied.
Consider the structure set {gk.} xep indexed by
I. Definea tha stvuctural trajectorvy X, to be a se-

T
quences of elements k(t) in I which select a specific

structure E-k(‘-) at tize t,
Xy = (X(0) ,k(1),...,k(T-1)) (2.10)

The structural trajectory Zr is a randcm variable



with probability of occurance generatad frcm the
Markov equation (2.8).

-1 .
X, I (2.11
pixp) = —o k(®),E )
whers tha control interval is
{o,1.2,...,7-1,7} (2.12)

for the finita time problem with terminal tima T.
Then for a given state and control trajectory

-1
(x, 0 )t_oqen&ra.cedby (2. 1)andx from a se-

quence of controls (u ):_; , the cost index is to
ba ths standard quadratic cost criterion
T=-1
- =1 T T T
Frr me e demo = L ZeQxe tRoRR, o
’ (2.13)

The cbjective is to choose a feedback control
law, which may depend on any past information about
b3 oru,_, mapnuxgx- into u

= -t
»

¢t : BT+ 32 (2.14)
»

¢t - P O (2.15)

such that the expected value of tha cost function
h from equation (2.13)

= B[ a,r __0 (2.16)

is minimized over all possible mappings ¢ "at _Qc

3. The Optimal Solution

Normally, a control law of the form (2.15)
must provide both a control and an estimation
function in this type of problem; henca the label
dval contxol is used. Here, the structure of the
problem allows the exact determination of k(t-l)

from Xer 2oy for almost all values of Sep-

This result is stated in the following lemma
Lemma 1 [12]: For the sat {_B_‘J xg ¢ wWhere the

Bk 's are digtinct, the seat

(ik ey TAX, ¥ akut}k’o

for almost all values of u e

Ignoring the set of contzols of measure zero
for which the mambers of

L
x4, ee1) ko

has distinct members

{3.1)

are not distinct, then for (almost) any control
which the optimal algorithm selects, the resulting
stata x can be compared with the members of the
set (3. f) l"or an exact match (of which there is
only cne with probability 1), and k(t) is identi-
fied as the generator of that matching member

Zg,ee1”
Since perfect identification is the best any

algorithm can achieve, the optimal control law
&, = Q;(it_ t) can be calculated with the assumption

Cx,r

that k(t-1) is known, since this is the case with
probability one. Thus, this solution will be la~-
beled thae switching gain solution, sinca, for each
time t, L+l optimal solutions are calculated apriori,
and cne solution is chosen on-iine for each time t,
based on the past neasurements Xer 2o and u, .

which yield perfect knowledge of k(t-l).

Dynamic programming is used to derive the op-
tinal switching gain solution. It has been proved
{12] that at each time t, the optimal expected
cost~-to~go, given the system structure k(t-1), is

»
vV (x, k(t=1),8) = xt:sk eXe (3.2)

where the S x are determined by a set of L+l
coupled Riccati-like equations (one for each possi-
ble configuration) s

e (L
A v S,
Sk,e TR {‘Eo Pix 2i,e41

L L ; -1
- i§° Pip Sienn 2y ||B* L Pmi‘iii,tﬂ?-x]_

i=Q
¢ P, B, S5, A+Q (3.3)
i=0 ik =i i,c+l
The optimal cont=zol, given k(t-1l) = k, is
* '1' -1
g8 "~ |R* 2 ?; : .
k,t [ i=0 :.k i i,t+l= i}
I 2 5—?.5-1 TE.> (3.4
i=0 .
Writing
L J
Be,e™ Sx,e e (3.5
then
i 1
T -1
Sk,e™ " [‘3*' L 2By S pnd
L = ‘ 4
aT ' ;
Z Pix 23 Zy,em 2 (3.6)

i-].

Thus, _!.1 = ¢ (x_) is a switching gain linear con~-
txol law wln%h dapends on k(t-1). The variabla
k(t-l) is determined by

k(t=1) = 1 iff x =Ax .+ Bi%eg 3.7
's and ths optimal gains
off-line and stored. Then

at each tima t, the proper gain is selected sa-
line from k(t-1l), using equatian (3.7), as in
Pig'u:a 1.

This solution is quite complex relative to
the structure of the usual linear quadratic solu-
tion. Each of the Riccati-like equations (3.7)
involves the same complexity as the Riccati equa-
tion for the linear quadratic solution. In addi-
tion, there is the cn-line ccmplexity arising
frem the izplementation of gain scheduling. In
Section 4, a non-switching gain solution will be
presented which has an identical on-lines struc-

Note that the S

can be ccmuutegi't
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ture to that of the linear quadratic solution, but
has similar off-lins camputaticnal complexity to
that of the switching gqain solution. This non=
switching gain solution is suboptimal, but requires
less on-line complexity.

airel)

Pigure 1l: The switching gain control law,.

A steady-state solution to equation (3.7) may
exist, but the conditions for its existence are
unknowm. The steady-stats solution would have the
advantaga that only ane set of gains need be stored
on-line, instead of requiring a set of gains to be
stored for each time t. Since the steady-stats
solution is simply the value to which eguation (3.7)
converges as it is iterated backward in time, at
present, the equationa can be itarated numerically
until either they converge or meet some test of
non-convergenca. The possibility of limit cycla
solutions in the switching gain computations is
excluded by the following lemma:

Lemma 2 (12]: 1If the optinmal expected cost-to-go
at time t is bounded for all t, then equation (3.7)
converges.

The existance of a stsady-state solutiocn to
the switching gain problem establishas a division
of system designs into those which are inherently
reliable and those which are unreliabla. Even
though conditions to tast for the existence of the
steady-state solution are unavailabla, software.
can be used with iteration for the test.

4. The Non-switching Gain Solution

In this Section, the'pamissible controls are
restricted to be of the linear feedback form
\_l_t’ 'G'tit (4'1)
where the gain matrix G is restricted to be a
function ¢ only of time and the initial conditions:
i, i.e., it cannot t depend on on x % or T .. The objective

e p—— t

is to minimize over the set of admissible centzols
the expectation of (2.13) where the expasctation is

taken over the set of possible structural trajec-
tories

;T€¥ 1 . (4.2)

and the set of initial conditions x.. The re-
sulting contxol law will be a non-swWitching law,
using gains determined apriori. - -

Thus, the cptizal control law B.=S,.x,

should mininize the cost
% 3‘}'21 Zo)

T T T
‘a[io_tg‘t".u Ru +_£TQE-TIEO}
(4.3) -
ovar the sat of adnissibla controls.

Since the structure of.u -»G xtis fixed,
the prublen is equ:.valent to 1 zmg, in an
open-loop sense, the cost function

. Tl
T T T_.T
Elf lr 1 =2 x Qx +x G RG X
8'2 Q [120 t2 L—t—t t £

T
*57251"10 (4.4)

with respect to the gain matrix G_, t=0,1,...,T-1l.
The marxrix minimum principle “of Athans (13] is
used to deta:m.ne the necessary cond.:.t:.ons for the
existence of u {or equivalently, G’ w1+ Let the
initial stace :( Le a zero mean random variable
which is J..ndependent of any structure. Let
T b
L, '2[50_:50[101 = Elx x4 4.5)
ba the covariance matrix of x
Cefining the covariance of 5-1-. as
A T
gtz xtla g | (4.6)

and if we defins

T
L0 =Bz x, [k(e-b=i,z 1 (4.7
then the matxrix [, e can be defined recursively as
1
L5047 ¥ oo (A+B S . 8, G r
’ ll IA
3, g8 Pat BE3E) =31%¢
foxr t > 1. (4.8)
T
_g_j'i-(y-gjgo)g_o (_A_+_B_j_('_;_°) (4.9)
and the relaticn
j
L.= T, I . t>0 (4.10)
t 1=0 it-l i,z

is obvious frem direct calculaticn.

Remark: At this stage, an equivalent detezmj.nistic
,mblem. {Preblem AZ) will be defined with stats

& o foxr £>0 and stata L at t=0,. The
syst'e'in iynamcs are then dafinec? by equations
(4.8) and (4.9).

Cefinition (P*:al_:a AE): For the system with
TatIixX state (I, for t>0 and § foz t=0
with dynamical ﬂt‘uat.ggs (4.3) and (4. 9%
matrix control G, ninimize the equ:.valent: deter-

5 ™1
ministic cost cver (Gt )t-O :




T=-1 o

- t'é'o tr(f (@ + G RG )] +tr(l,Ql (4.11)

Note that since the expectation in equation (4.4)

is over all structural trajectories X and the ini-

tial x o also,
-4

JTOJT

The symbol J,_, will be used exclusively in the fu-

(4.12)

turs. The cine~-stage, or instantaneous, cost at

time ¢t is

TC=ex(Z, (Q+GTRG,)] (4.13)
T =t -t =—t *

Probhlem iz is cemplaetely detsrministic in the

state (-z-i,c)iso ‘ _);0 and control Se-

At this point, the minimization is dacomposed
into two parts using the Principle of Optimality
{14]. The first minimization is over the interval
{1.2,...,7-1}, and for this the matrix minimm
principle will be used. The resulting solution
depends in general on the choice of G 0 and on the
initial conditions Eo and To

Let v* (G,) be the optimal cost resnltinq.
from the use ofgo and the optimal sequence El'
N
§3++ + + s Gy for the interval {1,2,....1}.
The second minimization is then over G o of the cost

» T of
Tom el R+ G RG] +V (G,) (4.14)

The Principle of Optimality statas tbat these
two minimizations result in the minimizing sequence

® -
T-1 for Problem AE.

C¢ o
Prom {Athans,13], the Hamiltonian for the min-
imization over {1,2,...,T-1} is

L L
565-1.:’1-0' 4,001 3m0° 9-:)

L
=t [ om

T
L, ,l@+G RG,)
1m0 1 i,t 3

€

[F(+ 1
v - Py", (ArB G L
Ty, i LA e et

T
@2,80% ) 55,0

for t € {1,2,3,..., T=1}

L
whi = .
ere the costate matrix is (-s-j,t-l-l )j-O
From the necessary condition for the costate,
» 9H
S . -
~i,t
. 9L it

the propagation of s

(4.15)

(4.18)

-~

i tbac.kwazd in time is darived.
L4

™
S, =T Q+G,RG
tee” Tt e e
¥ 1 T T.T
+ 1 Pysm - 7S, o) AE ByS; B8,
=0 3y
T T.T
*RSS 1238t SeBe Sy e M (4.17)

This equation is well-defined for any sequence

{5, )T and £>0. The cost V of using this ar-
bitrary sequence over the interval {1,2,...,T} is

given by

T-1 k
V(G t= S . -
(Celeg ! = izo $5,154,1 (4.18)
Define
L
A T T
S0 % 1 ®3,80)°8,, @B, 8,) *QrEsRE,
(4.19)
Then the cost of a given sequence (G )T“:L of
length T over the interval {(0,1,..., T} is
Ip = tTL S (G 8, reensGpq )] (4.20)

From the Eamiltonian minimization necessary condi~
tian

2 =9 : (3.21)
oG -
—: »
. .
the following relation between I 1,629, e41 and

G, 1is obtained.

L
Im, I

0=RG .
= TTF j2p lpp TE

t

T 7
[ (By8;,er1B5Se* BySy, e M

L
I pym (4.22)
gmg 3% L., i,t]

Remaxrk: At this point, a two-point boundary valua
preblem has been defined with the constraint (4.22)
relating equaticns (4.17) and (4.8). Equation
(4.22) is not explicitly solvable for G _because

L 4 ¢ CaAnot ba factored out of the sum over j; thus
[ .

it cannot be used as a substitution rule in the
othé;; two equations. At this time, the sclution
of G appears intractable. Thus, although necss-
sary conditions for the existancs of G ; , the
minimizing gain, have been established,” they do
not readily allow for the solution of G', and
certairly do not adnmit a closed-form expression.

S. Steady-state Non~-Switzhing Gain Solutions

In this Section a modified version of Problem
A is solved which yields a computational methodo-
logy for computing the cptinal steady-state non-
switching gain solutions. It will ke established
that the solution to this modified problem con-
varges to tha same limit as the problem in the
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last Section.

Definition 6: (Stability) G is a constant
stabilizing gain if and only if the ressulting system

x =AX, +B (5.1)

T+l =t =k (t)

is mean-squars stablae:
Etitlzl +0 ast+=

Definition 7: (Cost-Stability)
iﬁ cost-stable if and only if

The system (5.1)

I .t T
=0 Xe2X t2 Ru, < @
with probabilitv one.

The infinite~time problem is defined as a
minimization of

J = lim JT (5.2)
T
whare J, is tha cost function for the correspand-

ing ﬁ.nﬁe—time problem. The sequencas which
solves the infinite~time versions of Problem AE
is (G )t=o whan a solution exists. A solution
will exiSt if thera exists a sequenca of gains
for wh:.ch the limit in equation (5.2) exists.
This definition of the infinite-tine problem is
chosen rather than the definition requiring a
minimization of the average cost per unit time

1
J,.=1lim =T (5.3)
1l e T T

because there is a direct correlation between the
boundadness of J,_ over all T for a constant se-
quenca of gains 3 and mean square stability of
the system (S. n.

The cancepts of stability, cost-stability,
and existence of a steady-state solution are
related by the following lemmas {12]:

Lamma 3: A constant sequenca of gains (_G_)a-.t_o is
mean-square stabilizing if and only if thera esists
a bound B<= such that J <BV‘T.

Lemra 4: Any sequence (c;t cost~stabilizes
(5.1) (with probability one) if and only if J<=m,

The steady—-state solution for Problem AE is
defined as the limiting solution to equations (4.8)
(4.17) and (4.22) at time £, first as T+ and then
a3 t+o , if this limit exists. The steady-state
values for B, S., and I, , when they exist, sa-
tisfy the follav’inq equa&cns:

L.~> 3}
=3 L 1=0 Py3 j.(:wajc:)l: {A+]

cfge |

(5.5)

+a"s B G+ GTB?S.AI]
JTI ==/

L
1 T T
+ — 5.s_a_c+8.s.Al

lo

. T
j=0 3

. Z Pyy

] (561,
i=0

L
=RG |
3 =

which are the l..m.. of these equat.ions, given that

the limiting solution Z and G exist, whera T
satisfies =3

Tepm (5.7
and

lim T, =T (5.8)
tee Tt T

The following Theorem yields an explicit
procedura for the calculation of the steady-sta:e
none-switching control law.

Theorem: Define the segquencs (Ens ):_0 by the
follcwing equations:
T.' -1
[ m--ra+2~r BiS B,
nst j‘O j j j't“'l j
L T
)W 3's A .
jio Iy T3l = (5.9)
for a given terminal time T and
G = lim G {T)
B8, e S, {5.10)
where
T
=2 $05, 2 Sns, (5.11)
. .
g T ’ lr ?
* ) PLAS A+A'S 3.6
J=0 Jk = =j,t+d =j,t+l =3 ns,
T T.' r T
+ -Gnstgﬁij,ti-l& *+ Eas gq—j t+l —g--rxst ) for kel
LT =Q fonkel (5.12)

{The paramater (T) is suppressed on the right hand
side of equations (5.9 ) and (5.11).]

Then the follcwing statemants are equivalent.

1) The gain sequence (G ns )w

£=Q
TAx vl

cost~stabilizaes

X t+l

| <=

L '
2 |fim § o7 .5 ]
’.l‘"°k'0 .-l kot

3) A costestabilizing gain sequence exists.

4) The solution %o Problem A, (_G_'t ): -0 is cost-
stabilizing.
‘in addition, if
En"t for all ¢ (5.13)
-
G (steady-stata) exists
then
t ]
G4 "8 (5.14)

The proof can be found in Birdwell {12]. The
derivation of equations (5.9),(5.11) and (5.12)
can be found in Birdwell and Athan [11l] and Birdweil
[12]. A fortheeming zaper will contain the completa
theorem and proof. Zguation (5.9) To ({5.12) will
hereafter be refered to as the soluticns to Problem
3, which is descrited in (12] and is cmitted here
due to lack of space. The results of this theorem




give a direct ccmputational procedurg for calcula=-
ting the optimal steady state gain G as the limit
of gains G . There are scme questions as to the
poss:.bil:.ty Be limit cycles on the calculation of

. However, thg theorem guarantees cost~stabi-
lﬁzy using {¢ s} emg Whenever the system is

cost—stabz.l:.zabfe.
6. _ Robustness

—_— The original problem (Pxoblem A) can be fog~

milated in such a way that the sequence (Gns ) =0

will cost-stabilizs a set of linear systems wx.t.h

different actuator structures individually whenaver

such a stabilizing or robust gain exists.
Definition 8: A gain G is robust if

X, " @A+B, &x, - (6.1)

is stable for all k. This is the same as requiring

the matrix (5+§-k G) to have eigenvalues inside the
unit cixcle for all k.

Coxollary 1: For the set of L+l systems

5t+l-5§_t+_3_k3_t (6.2)
with

P=1 (6.3)
Ty - o : (6,4)

if a robust gain exists, then (G _ ’:-o

stabilizing sequenca for (6.1) for each k, and if

the gains G (T) convergs, then G __is a rcbust
) ~ns ~ns

gain. t

is a

Discussion: With Corollary 1, a spacific existenca

problem for robust linear gains is solved. Exis-
tence of a robust gain is made equivalent to the
existence of a finite cost infinite-time solution
to Problem B, which is readily computable.from
equations (5.9) and (5.11).

Consider the system whose transitions are
shown in Figure 2. The configuration dynamics are

modeled as being in any structural state with equal

probability of occurance initially and remaining
in that stata forever; this model is illustrated
graphically in Pigure zjbolav.

78285AWX30

GDw GD

Figure 2: Markov transition probabilities for
the Example.
The state dynamics are

Eesp"AX * Byl Xe=[x3,p *3,¢

—

k(t) € {0 :lrzy}

The cost to ba nmininized is

T
+5t55cll]

The matrices are given by

T T
:Zo 2.0%

2.71828 0.0 1. 0. oO.
A=
0.0 .37 2= lo. 1. o.
0. 0. 1.
1.71828 1.71828
-
=0 l..e3212  .63212
0.0 1.71823 1.71828 0.0
8,= B,

0.0 .63212 -.63212 0.0

For these matrices, equations (S5.9) and (5.11)
convergae, giving the following results:

-1.089 =-.008413
G »
ns -1.028 =-.01444
, 12.8  8.992] ,
2 TS, = =c
1=0 8.992  6.835

A brief check will verify that this is indeed a
robust gain. The Riccati solutions for this problem

. 109.8 9.030 114.3 6.285
0 - . 51'. =
9.030 6.821 6.285 6.836
114.4 111.66
s t - B
-2

l11l.66 6.849

The non-switching solution converges for this
system, and the thres resulting confiqurations are
stabilized. Therefore G__is a robust gain. Had
the solution not ccnverged, by Corollary 1, no zo-
bust gain would exist. The apriori expected cost
(bafore the confliguration state is known) is, given
x:

J = E'TC

7. Conclusion

In conclusion, the unifying concept of this
report is: What constitutes a raliable control
systen, or a reliable design? A major connection
wag established in this reseaxch baetwasn the con-
cepts of reliability and stabilizahility. Itera-
tive procedures wera developed for the determina-
tion of whether or not a given linear system of the
type considered in this repert is reliabla, with
respect to both non-switching and switching gain
controllexs., A system design is reliable if and
only if the set of coupled Riccati-iike matrix
difference equations for the switching gain solu-
ticn converges. 1In addition, if the matxix differ-
ence equations convsrge for the non-switching gain
solution, then the non-switching control law yields




a robust system; if they diverge, no robust gain
exigts.

This paper is an ovexrviaw of the results in
Birdwell (12]. ™o papers in preparation will con-
tain the proofs of the results which ara stated
hezs.
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